код продукции

Универсальный программируемый модуль Турбомастер 1002-9000-09

наименование и индекс изделия

ЭТИКЕТКА

49510043.421720.018-002 ЭT

1 ОСНОВНЫЕ СВЕДЕНИЯ

Модуль «Турбомастер 1002-9000-09» представляет собой многофункциональный программируемый измерительно-вычислительный преобразователь на базе программируемой логической интегральной схемы (ПЛИС). Модуль может использоваться как самостоятельно, так и совместно с другими устройствами и приборами.

Настройка, конфигурирование и программирование модуля, а также циклический обмен информацией осуществляются по последовательному интерфейсу либо при непосредственном подключении модуля к персональному компьютеру (ПК), либо с использованием преобразователя интерфейса – коммутатора Т1400.

В память модуля записывается прикладная программа, реализующая алгоритмы обработки входных сигналов и формирования выходных сигналов. Разработка и запись прикладной программы (программирование модуля) может осуществляться пользователем или на предприятии изготовителе.

2 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 2.1. Предприятие-изготовитель гарантирует соответствие модуля техническим условиям при соблюдении условий хранения, транспортирования и эксплуатации.
 - 2.2. Гарантийный срок эксплуатации и хранения 18 месяцев с момента поставки модуля.
- 2.3. В случае выхода изделия из строя в течение гарантийного срока при условии соблюдения потребителем правил эксплуатации, транспортирования и хранения предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.
- 2.4. Адрес предприятия, изготовившего модуль и производящего гарантийный ремонт: РФ, 644065, г. Омск, ул. Нефтезаводская 38e, ЗАО ИПФ «Турбулент».

Адрес сайта предприятия-изготовителя: www.turbulent.ru.

3 КОНФИГУРАЦИЯ МОДУЛЯ

Модуль имеет 9 входных полностью гальванически изолированных каналов измерения силы постоянного тока и 9 выходных дискретных каналов типа «электронный ключ с общим эмиттером».

Таблица 3.1 – Разъёмы модуля.

Конт.	Цепь	Назначение	Примечание						
	Разъём ХР1								
1	+24 B	Питания	Напряжение постоянного тока: от 22 до 24 В.						
2	0 B	Питание модуля	Потребляемая мощность: не более 3 Вт.						
3	TD								
4	RD	Интерфейс RS-232c							
5	SG								
	Разъём ХР2								
1	+I1	Входной сигнал «сила постоянного тока» (1	Пределы измерения: от 0 до 24 мА.						
2	-I1	канал)	Входное сопротивление: не более 100 Ом.						
3	+I2	Входной сигнал «сила постоянного тока» (2	Относительная погрешность измерения: 0,1%.						
4	-I2	канал)							
5	+I3	Входной сигнал «сила постоянного тока» (3							
6	-I3	канал)							
7	+I4	Входной сигнал «сила постоянного тока» (4							
8	-I4	канал)							
9	+I5	Входной сигнал «сила постоянного тока» (5							
10	-I5	канал)							
11	+I6	Входной сигнал «сила постоянного тока» (6							
12	-I6	канал)							
13	+I7	Входной сигнал «сила постоянного тока» (7							
14	-I7	канал)							
15	+I8	Входной сигнал «сила постоянного тока» (8							
16	-I8	канал)							
17	+I9	Входной сигнал «сила постоянного тока» (9							
18	-I9	канал)							
	Разъём ХРЗ								
1	Out1	Дискретный выходной сигнал (1 канал)	Тип сигнала: электронный ключ с общим						
2	Out2	Дискретный выходной сигнал (2 канал)	эмиттером.						
3	Out3	Дискретный выходной сигнал (3 канал)	Низкий уровень: от 0 до 0,5 В.						
4	Out4	Дискретный выходной сигнал (4 канал)	Высокий уровень: от2,5 до 5 (30) В.						
5	Out5	Дискретный выходной сигнал (5 канал)	Ток нагрузки: не более 100 мА.						
6	Out6	Дискретный выходной сигнал (6 канал)	D						
7	Out7	Дискретный выходной сигнал (7 канал)	Высокий уровень до 30 В обеспечивается при						
8	Out8	Дискретный выходной сигнал (8 канал)	подключении к внешнему источнику питания.						
9	Out9	Дискретный выходной сигнал (9 канал)							

Конт.	Цепь	Назначение	Примечание
10	COM	Общий контакт дискретных выходных сигналов	

4 ОБЩИЙ ВИД МОДУЛЯ

На рисунке 4.1 показано расположение разъемов XP1, XP2, XP3.

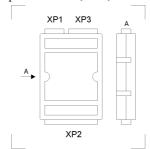


Рисунок 4.1 – Разъёмы модуля.

5 СХЕМЫ ПОДКЛЮЧЕНИЯ

5.1 Установка и подключение модулей

Для обеспечения лучшего теплоотвода не рекомендуется размещать модули с полной гальванической изоляцией (T1002, T1003) друг над другом!

Работы по подключению модулей T1002 к коммуникационным модулям T1400, к ПК и иным устройствам должны производиться только при выключенном питании модулей T1002!

5.2 Подключение питания

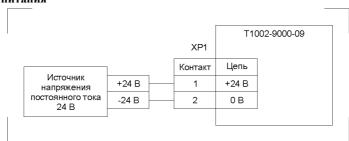


Рисунок 5.1 – Схема подключения питания.

5.3 Подключение к ПК

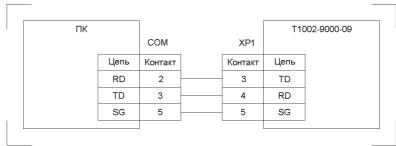


Рисунок 5.2 – Схема подключения к ПК.

5.4 Подключение к Т1400

На рисунке 5.3 приведена схема подключения T1002 к первому интерфейсному выходу T1400. Подключение к другим интефейсным выходам осуществляется аналогично. Цепи «SG» разъёма X1 всех подключенных к T1400 модулей T1002 должны соединяться с цепью «SG» разъёма X1 модуля T1400.

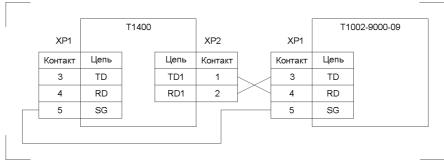


Рисунок 5.3 – Схема подключения к первому интерфейсному выходу Т1400.

5.5 Подключение токового датчика

На рисунке 5.4 приведена схема подключения сигнала к первому токовому входу Т1002. Подключение к другим токовым входам осуществляется аналогично.

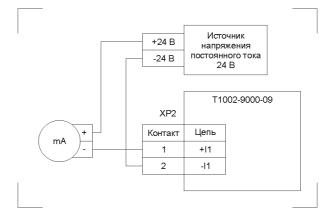


Рисунок 5.4 – Схема подключения токового датчика к первому токовому входу.

5.6 Подключение дискретного выхода

На рисунке 5.5 приведена схема подключения нагрузки к первому дискретному выходу Т1002 так, чтобы выход мог управлять нагрузкой. При этом сила тока, текущего через нагрузку, не должна превышать 100 мА.

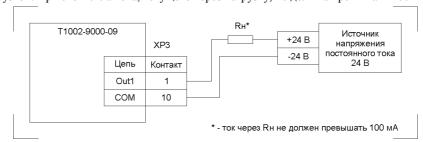


Рисунок 5.5 – Схема использования дискретного выхода для управления нагрузкой.

На рисунке 5.6 приведена схема подключения первого выходного канала к внешнему устройству, использующему выходной дискретный сигнал модуля в качестве своего входного сигнала.

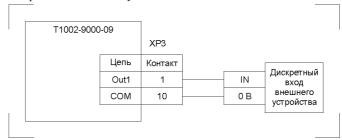


Рисунок 5.6 – Схема использования дискретного выхода для сигнализации.

6 КАЛИБРОВОЧНЫЕ ЗНАЧЕНИЯ, НАСТРОЙКИ, РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ И УПРАВЛЕНИЕ

6.1 Измерение силы тока

F – текущее значение частоты ПНЧ.

I – текущее значение тока.

Р – текущее значение параметра.

I=(F-Fmin) · (Imax-Imin)/(Fmax-Fmin)+Umin.

P=(I-Imin) · (Pmax-Pmin)/(Imax-Imin)+Pmin.

Таблица 6.1 – Адреса калибровочных значений, настроек и результатов измерений (в Modbus-регистрах).

№ канала	Fmin	Fmax	F	Îmin	Imax	I	Pmin	Pmax	P
1	8704	8758	8820	8722	8776	8838	8740	8794	8856
2	8706	8760	8822	8724	8778	8840	8742	8796	8858
3	8708	8762	8824	8726	8780	8842	8744	8798	8860
4	8710	8764	8826	8728	8782	8844	8746	8800	8862
5	8712	8766	8828	8730	8784	8846	8748	8802	8864
6	8714	8768	8830	8732	8786	8848	8750	8804	8866
7	8716	8770	8832	8734	8788	8850	8752	8806	8868
8	8718	8772	8834	8736	8790	8852	8754	8808	8870
9	8720	8774	8836	8738	8792	8854	8756	8810	8872

Таблица 6.2 – Калибровочные значения.

- acomma c.=	. rummopobo m	Die Gila leilini.		
№ канала	Imin, мА	Imax, мА	Fmin, Гц	Fmax, Гц
1	4	20		
2	4	20		
3	4	20		
4	4	20		
5	4	20		
6	4	20		
7	4	20		
8	4	20		
9	4	20		

6.2 Управление выходами

Для замыкания выхода в соответствующую ячейку записывается 1, для размыкания -0.

Таблица 6.3 – Адреса ячеек управления (в modbus-регистрах).

№ канала	1	2	3	4	5	6	7	8	9
Адрес	8946	8948	8950	8952	8954	8956	8958	8960	8962

7 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ И ПОСТАВКЕ

Свидетельство о приёмке								
Универсальный программируемый модуль Турбомастер 1002-9000-09 №								
Изготовлен и принят в соответствии с обязательными требованиями государственных стандартов, действующих технических условий 49510043.421720.018 ТУ и конструкторской документации и признан годным для эксплуатации.								
	Начальник ОТК							
МΠ								
	личная подпись	расшифровка подписи						
	Дата <u>год, ме</u>	сяц, число						